时 间 (小时)	24	48	72	96	120	144	168	192	216	240	264	288	312	336	360	384	408	432	456	480	504	528	532
电 流 (毫安)	3	3	3	3	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	3	2.7	3	3	3	3.5	3.4	3.8	3.1	3	3
功 率 (瓦)	0.65	0.65	0.6	0.6	0.56	0.56	0.5	0.5	0.47	0.48	0.46	0.46	0.56	0.54	0.5	0.5	0.64	0.63	0.64	0.5	0.6	0.58	0.48

寿命实验管的时间、电流、功率数据记录

图4 寿命试验管的输出功率曲线

寿命曲线测试采用昼夜连续点燃法。工作寿命定义, 按照国家科委规定是指器件正常工作,当其输出功 率下降到起始功率70%时的连续运转时间(小时)。 由测试结果看出,我们已使内腔玻璃波导激光器的 封离寿命延长到500小时以上。 实验管输出功率偏低,主要原因是阴极温度引 起的谐振腔失调。

本文在写作过程中曾得到冯志超、裘明信教授 的指导与帮助,在此表示感谢。

参考文献

- [1] John J. Degnan; Appl. Phys., 1976, 11, 1~32.
- [2] A. Von. Engel; Ionized Gases, 1955, 227.
- [3] Willett, Colin S.; Introduction to Gas Laser, 1974, 281.
- [4] Theodore S. Fahlen; Appl. Opt., 1973, 12, No. 10, 2383.

(成都电讯工程学院 王瑞峰 孙维勇 洪永和 1981年3月13日收稿)

TEA CO2 激光器用的低电感马科斯高压发生器

Abstract: In this paper we introduce a Marx bank which has low inductance and the characteristics of high repetition rate discharge, and can be used in TEA CO_2 lasers. Its construction is illustrated in detail. The inductance of Marx bank is less than 60 nH, the discharge repetition rate is higher than 40 pps and the lifetime over 10^7 pulses.

对于采用电激励方式的 TEACO₂ 激光器 来说, 一般总希望其放电电流脉冲的前沿陡而放电 快,这 是和放电回路的电感量直接相关的。我们研制了一 种用于 TEACO₂ 激光器的低电感重复 频率 马科斯 高压发生器,根据测试结果,其电感量、损耗因数、重 复频率、寿命和比容都很理想。

电容器是马科斯高压发生器的核心,对于性能 优良的马科斯高压发生器,应采用低电感重复频率 高压电容器。电容器的电感主要是由电容器的结构 和引线产生的;电容器能否在重复频率条件下持续 工作,与电容器的能量损耗有直接关系,而电容器的 能量损耗主要是取决于制作电容器所采用的材料。 为了减小损耗,我们选用了优良的绝缘介质——250 微米厚的聚脂薄膜作为电容器的绝缘层; 电极板选 用 50 微米厚的紫铜箔。我们制作的电容器如图 1 所示,它在结构上有两个特点:(1)利用了聚脂薄膜 耐压高、韧性好的优点,将其对边弯折,用曲折的一 端把电极板不引线的一端包起来,这样就大大减小 了电极板有效面积之外产生电感和损耗的长度(如 图 2 中所示的 a 部分)。(2)电极引线以电极板的全 宽度引出,因而减小了由于引线而产生的电感和损 耗。我们制作的电容器的电感量一般为 20~30 毫微

. 52 .

亨,而损耗小于10-3,比容大于20微微法/厘米3。

我们采用上述电容器,研制了用于 TEACO₂ 激 光器的马科斯高压发生器,如图 3 所示。外形尺寸 (包括底座)是: 35×37×8.5 厘米³。它由三个如图 1 所示的电容器及两个火花隙组成,中间一个容量 为 0.07 微法的电容器单独组成一级,两边容量分 别为 0.035 微法的电容器并联组成另一级。电容器 的电极和火花隙的电极紧密相连,电极之间彼此又 是电容器型的结构,它们即是马科斯组的引线,又是 电容器的极板。在电容器与火花隙的相互连接中, 没有另外使用其它导线。所以,制作的马科斯高压 发生器,除了具有结构紧凑的特点之外,更主要的是 从整体来看,它没有引入附加电感,几乎是一个无感 的全电容性的整体。

经过测试,我们研制的马科斯高压发生器的指

标为:

总容量: 0.035 微法 工作电压: >55 千伏 总电感量: <60 毫微亨 损耗因数 tg δ: 20 赫时 <10⁻³ 重复频率: >40 次/秒

对于马科斯高压发生器到激光器的引线,若采 用如图 3 中(1)所示的那样,用三条宽铜箔,中间由 绝缘介质隔开的传输线结构的引线,那么在所有电 路的回路中将几乎不产生电感,这对于脉冲工作的 TEACO₂ 激光器来说,将是十分有利的。

实验证明,使用我们制作的马科斯高压发生器, 比采用一般的马科斯高压发生器,可使激光器的效 率提高4%以上。

(中国科学院物理研究所 吕惠宾 周岳亮 崔大复 陈正豪 1981年2月2日收稿)

He-Ne 放电小信号增益的电子饱和 效应及其径向分布

Abstract: The expression of small signal gain as a function of electron density is given. With this expression, the distribution and saturation of the gain in a cross section of the discharge tube can be quantitatively calculated.

在 He-Ne 放电管管心附近,增益随放电电流增 大出现饱和的现象,早已为许多研究者报导。1963 年,White 和 Gordon 研究了 He-Ne 放电的一系 列谱线,从粒子数反转机制出发,对实验结果进行了 理论解释,并得出了能级粒子数反转的表达式[1,2];

$$\Delta N = N_{3} - \frac{g_{3}}{g_{2}} N_{2} = \frac{M}{A' \tau_{r} [1 + (A' \tau_{r}')^{-1}]} - k'_{4} p_{N_{0}} n_{e}$$
(1)

. 53 .